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The Möbius function associated with a finite, partially-ordered

set χ (poset) µχ is the map µχ : χ×χ→ Z such that : µχ(a, b) =

0 unless a ≤ b when it is defined recursively by the equations

µχ(a, a) = 1∑
a≤c≤b

µχ(a, c) = 0, a < b.

Generalizzation of the classical Möbius function of the number

theory:

µ(n) = (−1)r if n is the product of r distinct primes

µ(n) = 0 if n is divisible by the square of a prime.



Two Möbius functions related to a group G

If G is a (finite) group, we define two Möbius functions related

to G, denoted by µG and λG . Namely,

1. if L(G) is the subgroup lattice of G, the Möbius function µ

of G is defined as
µ : L(G) → Z, H 7→ µG(H,G)(= µ(H));

2. if C(G) is the poset of conjugacy classes of subgroups of G,
with the order relation:
[H] ≤ [K] if and only if H ≤ Kg for some g ≤ G,
its Möbius function is defined by
λ : C(G)→ Z, [H] 7→ µC([H], [G]) = λ(H)



µ is the classical Möbius function, that is:

µ(G) = 1,
∑
H≤K

µ(K) = 0 , forH < G

In analogous way we define λ.

Example If G is the cyclic infinite group, µG is the number

theoretic Möbius function: if Gn is the subgroup of G of

index n, µG(Gn) = µ(n)



Does a relation between µG and λG exist?

Answer: sometimes

We go back to 1989: T. Hawkes, M. Isaacs, and M. Özaydin,

in the beautiful paper On the Möbius function of a finite group,

showed that

µ({1}) = |G′| · λ({1})

holds for any finite solvable group G,

More generally in 1993, H. Pahlings ( On the Möbius function

of a finte group), proved that the relation

µ(H) = [NG′(H) : G′ ∩H] · λ(H) (1)

is true for any H ≤ G whenever G is finite and solvable.



We say that G satisfies the (µ, λ)-property if (1) holds for any

H ≤ G.

The (µ, λ)-property does not hold for every finite group.

Not true for the Mathieu group M12 (1990 M. Bianchi, A. Gillio

and A. Verardi, On Hawkes-Isaacs-Özaydin’s conjecture

and for the unitary groups PSU(3,22n) (2019 G. Zini, The

Möbius function of PSU(3,22n)

Here, we present some attempt to study a possible relation be-

tween µ and λ in case of non-solvable groups



First, we suggest some reasons to justify our interest in studying
µ and λ and the relation between them.
1. Generation of groups and probability of generating a
finite group (P. Hall(1936):
if we denote by σn(G) the number of ordered n-tuples of ele-
ments of G and by φn(H) the number of ordered n-tuples of
elements of G which generate H ≤ G respectively, we get

σn(G) =
∑

H:H≤G
φn(H) and, by Möbius inversion formula

φn(G) =
∑

H,H≤G
σn(H)µ(H) =

∑
H,H≤G

|H|nµ(H)

It follows that the probability that n elements of G, (G finite)
generate G, ProbG(n) is given by:

ProbG(n) =
φn(G)

| G |n
=

∑
H≤G

µG(H )

[G : H ]n



2. A complex function (Boston, Mann 1996):

PG(s) =
∑
n∈N

an(G)

ns
, s ∈ C,

where

an(G) =
∑

H≤G,[G:H]=n

µG(H)

PG(t) = ProbG(t) for t ∈ N

In case of profinite groups, the sum becomes:

PG(s) =
∑

H≤oG

µG(H)

| G : H |s

where H ranges over all open subgroups of G.



Mann conjectured that this sum is absolutely convergent in
”some” half complex plane, whenever the finitely generated profi-
nite group is positively generated that is, for some k , the prob-
ability that k random elements generate G, is positive. This
conjecture is implied by the following 2 facts:

1. the number |µG(H)| is bounded by a polynomial function in
[G : H] ;

2. the number bn(G) of subgroups H of index n, with Hsoc(G) =
G, satisfying µG(H) 6= 0, grows at most polynomially in n.

Lucchini (2010): Actually 1 and 2 are true, if they are verified
for almost finite simple groups.



1 and 2 were proved in the case of alternating and symmetric

groups (Lucchini-Colombo- 2010);

Not very much is known on the exact values of µ(H) when G

is a simple group; up to our knowledge, the only infinite families

of non-abelian simple groups for which the Möbius function is

completely known ( and these families verify Mann’s conjecture)

are the following.



• The groups PSL(2, q) and PGL(2, q) for any prime power q
(Downs 1991, Hall 1936)

• The Suzuki groups Sz(q) for any odd power q of 2 (Down,
Jones, 2016);

• The Ree groups Ree(q) for any odd power q of 3 (Pierro,
2016);

• The 3-dimensional unitary groups PSU(3,22n), n > 0 (Zini
2018);

• The groups PSL(3,2p) (Borello, D.V., Zini )



(µ, λ)-property for some families of non-solvable groups

(D.V., Zini)

Before considering some particular classes of groups which satisfy

(µ, λ)-property, we give some ”general fact”:

1: It is important the knowledge of subgroups which are inter-

section of maximal subgroups.

Denote by MaxInt(G) the set whose elements are G and the

subgroups of G which are the intersection of maximal subgroups

of G.

Lemma 1. (Hall 1936) Let H ≤ G be such that µ(H) 6= 0. Then

H ∈MaxInt(G).



The same is true for λ (note that C is not in general a lattice)

Lemma 2. Let H ≤ G be such that λ(H) 6= 0. Then H ∈
MaxInt(G).

Proof We go by induction on [G : H]; The result is true for
H = G; so, we consider H < G and take K ∈ MaxInt(G) is the
intersection of all maximal subgroups containing H . If H is not
in MaxInt(G), H < K . Take N ≤ G, H < N and λ(N) 6= 0. By
induction hypothesis, N ∈MaxInt(G) and K ≤ N . By definition
of λ,

λ(H) = −
∑

[H]<[N ]≤[G], λ(N)6=0

λ(N) = −
∑

[K]≤[N ]≤[G]

λ(N) = 0.

we get λ(H) = 0. A contradiction.

It follows: If H ≤ G and Φ(G) 6≤ H , then µ(H) = λ(H) = 0



1. Products and Extensions - (µ, λ)-property for direct prod-

ucts of a finite number of finite groups and for finite extensions

of a finite group.

Theorem 3. Let G =
n∏
i=1

Gi be a direct product of groups {Gi}

such that every maximal subgroup M of G splits as a direct

product M =
n∏
i=1

Mi , with Mi ≤ Gi for every i. If G1, . . . , Gn

satisfy the (µ, λ)-property, then G satisfies the (µ, λ)-property.



Theorem follows from:

Proposition 4. Let n ≥ 2 and G =
n∏
i=1

Gi be a direct product

of groups {Gi} such that every maximal subgroup M of G splits

as a direct product M =
n∏
i=1

Mi , with Mi ≤ Gi for every i. Let

H =
n∏
i=1

Hi ≤ G with Hi ≤ Gi for every i. Then

µG(H) =
n∏
i=1

µGi(Hi), λG(H) =
n∏
i=1

λGi(Hi).

Proof From the assumptions it follows immediately that, if

K ∈MaxInt(G), then K =
n∏
i=1

Ki with Ki ≤ Gi for every i.



Hence, we only consider the groups H <
n∏
i=1

Ki ≤ G with Ki ≤ Gi

for every i.
Let I ⊆ {1, . . . , n} be such that Hi 6= Gi for i ∈ I , and Hi = Gi
for i ∈ {1, . . . , n} \ I .
We have so that the subposet of L made by the groups K =
n∏
i=1

Ki satisfying H ≤ K ≤ G is isomorphic to the subgroup poset

of groups K =
∏
i∈I

Ki satisfying
∏
i∈I

Hi ≤ K ≤
∏
i∈I

Gi .

An analogous poset isomorphism holds for the posets of conju-
gacy classes.
Hence, µG(H) = µ∏

i∈I Gi
(
∏
i∈I

Hi) and λG(H) = λ∏
i∈I Gi

(
∏
i∈I

Hi).

Then we can assume that Hi 6= Gi for all i = 1, . . . , n and we
use induction on [G : H].



We began considering some particular classes (actually very

small!)

minimal non-solvable group: a non-solvable group whose proper

subgroups are all solvable.

A minimal non-solvable group which is simple is a minimal simple

and minimal simple groups are exactly the Frattini-free minimal

non-solvable groups, as, if G is a minimal non-solvable group and

Φ(G) is its Frattini subgroup, then G/Φ(G) is minimal simple.

Remark: for simple groups, (µ, λ)-property becomes:

µ(H) = [NG(H) : H] · λ(H).



1. minimal simple groups

• PSL(2,2r), where r is a prime;

• PSL(2,3r), where r is an odd prime;

• PSL(2, p), where p > 3 is a prime such that 5 | (p2 + 1);

• Sz(2r), where r is an odd prime;

• PSL(3,3).

For these groups, we get the thesis by direct computation



More generally (but not so much)

2. minimal non solvable groups

Here, we consider Φ(G) 6= 1 and we are left with H ≤ G, s.t.

Φ(G) ≤ H .

Using similar arguments to those of Pahlings, we consider

Ḡ = G/Φ(G) and H̄ = H/Φ(G).

We get:

µ(H,G) = µ(H̄, Ḡ), λ(H,G) = λ(H̄, Ḡ), and

[NḠ′(H̄) : H̄ ∩ Ḡ′] = [NG′(H) : H ∩G′].

As Ḡ is minimal simple, the thesis follows

As I said we are considering very small classes. Actually, our

minimal non solvable groups are particular N -groups (groups



whose local subgroups are all solvable). These were classified by

Thompson: they are almost simple groups G

S ≤ G ≤ Aut(S), where S is one of the following simple groups:



• the linear group PSL(2, q), for some prime power q ≥ 4;

• the Suzuki group Sz(2r), for some non-square power, r ≥ 3

• the linear group PSL(3,3);

• the unitary group U3(3);

• the alternating group A7 ;

• the Mathieu group M11 ;

• the Tits group 2F4(2)′ .



Example Let G = G1×G2 where no non-trivial quotients of G1

and G2 are isomorphic. Then it is easily seen from Goursat’s

lemma that every maximal subgroup M of G splits as M =

M1 ×M2 with Mi ≤ Gi , i = 1,2.

For instance, the Theorem applies to G = G1 ×G2 where G1 is

minimal non-solvable and G2 is solvable. An easy remark about

extensions:

If a group G is a finite extension of a group Ḡ which does not

satisfy the (µ, λ)-property, then G does not satisfy the (µ, λ)-

property.

Remark 5. Let G be a finite group, H be a subgroup of G,

S = {K ≤ G : H ≤ K} be the subposet of the subgroup lattice

of G made by the overgroups of H , and S̄ = {[K] ≤ [G] : [H] ≤



[K]} be the corresponding subposet of the conjugacy classes [K]

with [H] ≤ [K]. Suppose that, for every K ∈ S \ {G}, we have

NG′(K) = G′ ∩K . Then the (µ, λ)-property for H holds if and

only µ(H) = λ(H), and hence, if and only if the posets S and

S̄ are isomorphic. In the case S4
∼= H ≤ G = U3(3), we have

that S = {H,M1,M2,M3, G} 6∼= S̄ = {[H], [M1], [M2] = [M3], [G]},

where Mi is a maximal subgroup of G. For every K ∈ S , K

is self-normalizing in the simple group G. Thus, S 6∼= S̄ implies

that the (µ, λ)-property fails at H .



Thank You
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