# Some results about Möbius functions for a finite non-solvable group 

IGT2020/21-24 hour

Francesca Dalla Volta
Università Milano-Bicocca
(Joint work with Giovanni Zini - Università della Campania)

The Möbius function associated with a finite, partially-ordered set $\chi$ (poset) $\mu_{\chi}$ is the map $\mu_{\chi}: \chi \times \chi \rightarrow \mathbb{Z}$ such that: $\mu_{\chi}(a, b)=$ 0 unless $a \leq b$ when it is defined recursively by the equations

$$
\begin{aligned}
\mu_{\chi}(a, a) & =1 \\
\sum_{a \leq c \leq b} \mu_{\chi}(a, c) & =0, a<b
\end{aligned}
$$

Generalizzation of the classical Möbius function of the number theory:
$\mu(n)=(-1)^{r}$ if $n$ is the product of $r$ distinct primes
$\mu(n)=0$ if $n$ is divisible by the square of a prime.

Two Möbius functions related to a group $G$

If $G$ is a (finite) group, we define two Möbius functions related to $G$, denoted by $\mu_{G}$ and $\lambda_{G}$. Namely,

1. if $\mathcal{L}(G)$ is the subgroup lattice of $G$, the Möbius function $\mu$ of $G$ is defined as
$\mu: \mathcal{L}(G) \rightarrow \mathbb{Z}, H \mapsto \mu_{G}(H, G)(=\mu(H)) ;$
2. if $\mathcal{C}(G)$ is the poset of conjugacy classes of subgroups of $G$, with the order relation:
$[H] \leq[K]$ if and only if $H \leq K^{g}$ for some $g \leq G$,
its Möbius function is defined by
$\lambda: \mathcal{C}(G) \rightarrow \mathbb{Z},[H] \mapsto \mu_{\mathcal{C}}([H],[G])=\lambda(H)$
$\mu$ is the classical Möbius function, that is:

$$
\mu(G)=1, \quad \sum_{H \leq K} \mu(K)=0, \text { for } H<G
$$

In analogous way we define $\lambda$.

Example If $G$ is the cyclic infinite group, $\mu_{G}$ is the number theoretic Möbius function: if $G_{n}$ is the subgroup of $G$ of index $n, \mu_{G}\left(G_{n}\right)=\mu(n)$

Does a relation between $\mu_{G}$ and $\lambda_{G}$ exist?
Answer: sometimes
We go back to 1989: T. Hawkes, M. Isaacs, and M. Özaydin, in the beautiful paper On the Möbius function of a finite group, showed that

$$
\mu(\{1\})=\left|G^{\prime}\right| \cdot \lambda(\{1\})
$$

holds for any finite solvable group $G$,
More generally in 1993, H. Pahlings ( On the Möbius function of a finte group), proved that the relation

$$
\begin{equation*}
\mu(H)=\left[N_{G^{\prime}}(H): G^{\prime} \cap H\right] \cdot \lambda(H) \tag{1}
\end{equation*}
$$

is true for any $H \leq G$ whenever $G$ is finite and solvable.

We say that $G$ satisfies the ( $\mu, \lambda$ )-property if (1) holds for any $H \leq G$.
The ( $\mu, \lambda$ )-property does not hold for every finite group.
Not true for the Mathieu group $M_{12}$ (1990 M. Bianchi, A. Gillio and A. Verardi, On Hawkes-Isaacs-Özaydin's conjecture and for the unitary groups $\operatorname{PSU}\left(3,2^{2^{n}}\right)$ (2019 G. Zini, The Möbius function of $\operatorname{PSU}\left(3,2^{2^{n}}\right)$

Here, we present some attempt to study a possible relation between $\mu$ and $\lambda$ in case of non-solvable groups

First, we suggest some reasons to justify our interest in studying $\mu$ and $\lambda$ and the relation between them.

1. Generation of groups and probability of generating a finite group (P. Hall(1936):
if we denote by $\sigma_{n}(G)$ the number of ordered $n$-tuples of elements of $G$ and by $\phi_{n}(H)$ the number of ordered $n$-tuples of elements of $G$ which generate $H \leq G$ respectively, we get

$$
\begin{gathered}
\sigma_{n}(G)=\sum_{H: H \leq G} \phi_{n}(H) \text { and, by Möbius inversion formula } \\
\phi_{n}(G)=\sum_{H, H \leq G} \sigma_{n}(H) \mu(H)=\sum_{H, H \leq G}|H|^{n} \mu(H)
\end{gathered}
$$

It follows that the probability that $n$ elements of $G$, ( $G$ finite) generate $G, \operatorname{Prob}_{G}(n)$ is given by:

$$
\operatorname{Prob}_{G}(n)=\frac{\phi_{n}(G)}{|G|^{n}}=\sum_{H \leq G} \frac{\mu_{G}(H)}{[G: H]^{n}}
$$

2. A complex function (Boston, Mann 1996):

$$
P_{G}(s)=\sum_{n \in \mathbb{N}} \frac{a_{n}(G)}{n^{s}}, s \in \mathbb{C},
$$

where

$$
a_{n}(G)=\sum_{H \leq G,[G: H]=n} \mu_{G}(H)
$$

$P_{G}(t)=\operatorname{Prob}_{G}(t)$ for $t \in \mathbb{N}$

In case of profinite groups, the sum becomes:

$$
P_{G}(s)=\sum_{H \leq_{o} G} \frac{\mu_{G}(H)}{|G: H|^{s}}
$$

where $H$ ranges over all open subgroups of $G$.

Mann conjectured that this sum is absolutely convergent in "some" half complex plane, whenever the finitely generated profinite group is positively generated that is, for some $k$, the probability that $k$ random elements generate $G$, is positive. This conjecture is implied by the following 2 facts:

1. the number $\left|\mu_{G}(H)\right|$ is bounded by a polynomial function in [ $G: H$ ] ;
2. the number $b_{n}(G)$ of subgroups $H$ of index $n$, with $H \operatorname{soc}(G)=$ $G$, satisfying $\mu_{G}(H) \neq 0$, grows at most polynomially in $n$.

Lucchini (2010): Actually 1 and 2 are true, if they are verified for almost finite simple groups.

1 and 2 were proved in the case of alternating and symmetric groups (Lucchini-Colombo- 2010);

Not very much is known on the exact values of $\mu(H)$ when $G$ is a simple group; up to our knowledge, the only infinite families of non-abelian simple groups for which the Möbius function is completely known ( and these families verify Mann's conjecture) are the following.

- The groups $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$ for any prime power $q$ (Downs 1991, Hall 1936)
- The Suzuki groups $S z(q)$ for any odd power $q$ of 2 (Down, Jones, 2016);
- The Ree groups Ree(q) for any odd power $q$ of 3 (Pierro, 2016);
- The 3-dimensional unitary groups $\operatorname{PSU}\left(3,2^{2^{n}}\right), n>0$ (Zini 2018);
- The groups $\operatorname{PSL}\left(3,2^{p}\right)$ (Borello, D.V., Zini )
( $\mu, \lambda$ )-property for some families of non-solvable groups (D.V., Zini)

Before considering some particular classes of groups which satisfy ( $\mu, \lambda$ )-property, we give some "general fact":

1: It is important the knowledge of subgroups which are intersection of maximal subgroups.
Denote by MaxInt $(G)$ the set whose elements are $G$ and the subgroups of $G$ which are the intersection of maximal subgroups of $G$.
Lemma 1. (Hall 1936) Let $H \leq G$ be such that $\mu(H) \neq 0$. Then $H \in \operatorname{MaxInt}(G)$.

The same is true for $\lambda$ (note that $\mathcal{C}$ is not in general a lattice)
Lemma 2. Let $H \leq G$ be such that $\lambda(H) \neq 0$. Then $H \in$ MaxInt( $G$ ).

Proof We go by induction on [ $G: H$ ]; The result is true for $H=G$; so, we consider $H<G$ and take $K \in \operatorname{MaxInt}(G)$ is the intersection of all maximal subgroups containing $H$. If $H$ is not in MaxInt $(G), H<K$. Take $N \leq G, H<N$ and $\lambda(N) \neq 0$. By induction hypothesis, $N \in \operatorname{MaxInt}(G)$ and $K \leq N$. By definition of $\lambda$,

$$
\lambda(H)=-\sum_{[H]<[N] \leq[G], \lambda(N) \neq 0} \lambda(N)=-\sum_{[K] \leq[N] \leq[G]} \lambda(N)=0 .
$$

we get $\lambda(H)=0$. A contradiction.
It follows: If $H \leq G$ and $\Phi(G) \notin H$, then $\mu(H)=\lambda(H)=0$

1. Products and Extensions - $(\mu, \lambda)$-property for direct products of a finite number of finite groups and for finite extensions of a finite group.

Theorem 3. Let $G=\prod_{i=1}^{n} G_{i}$ be a direct product of groups $\left\{G_{i}\right\}$ such that every maximal subgroup $M$ of $G$ splits as a direct product $M=\prod_{i=1}^{n} M_{i}$, with $M_{i} \leq G_{i}$ for every $i$. If $G_{1}, \ldots, G_{n}$ satisfy the $(\mu, \lambda)$-property, then $G$ satisfies the ( $\mu, \lambda$ )-property.

Theorem follows from:
Proposition 4. Let $n \geq 2$ and $G=\prod_{i=1}^{n} G_{i}$ be a direct product of groups $\left\{G_{i}\right\}$ such that every maximal subgroup $M$ of $G$ splits as a direct product $M=\prod_{i=1}^{n} M_{i}$, with $M_{i} \leq G_{i}$ for every $i$. Let
$H=\prod_{i=1}^{n} H_{i} \leq G$ with $H_{i} \leq G_{i}$ for every $i$. Then

$$
\mu_{G}(H)=\prod_{i=1}^{n} \mu_{G_{i}}\left(H_{i}\right), \quad \lambda_{G}(H)=\prod_{i=1}^{n} \lambda_{G_{i}}\left(H_{i}\right)
$$

Proof From the assumptions it follows immediately that, if $K \in \operatorname{MaxInt}(G)$, then $K=\prod_{i=1}^{n} K_{i}$ with $K_{i} \leq G_{i}$ for every $i$.

Hence, we only consider the groups $H<\prod_{i=1}^{n} K_{i} \leq G$ with $K_{i} \leq G_{i}$ for every $i$.
Let $I \subseteq\{1, \ldots, n\}$ be such that $H_{i} \neq G_{i}$ for $i \in I$, and $H_{i}=G_{i}$ for $i \in\{1, \ldots, n\} \backslash I$.
We have so that the subposet of $\mathcal{L}$ made by the groups $K=$ $\prod^{n} K_{i}$ satisfying $H \leq K \leq G$ is isomorphic to the subgroup poset $i=1$
of groups $K=\prod_{i \in I} K_{i}$ satisfying $\prod_{i \in I} H_{i} \leq K \leq \prod_{i \in I} G_{i}$.
An analogous poset isomorphism holds for the posets of conjugacy classes.
Hence, $\mu_{G}(H)=\mu_{\prod_{i \in I} G_{i}}\left(\prod_{i \in I} H_{i}\right)$ and $\lambda_{G}(H)=\lambda_{\prod_{i \in I} G_{i}}\left(\prod_{i \in I} H_{i}\right)$.
Then we can assume that $H_{i} \neq G_{i}$ for all $i=1, \ldots, n$ and we use induction on $[G: H]$.

We began considering some particular classes (actually very small!)
minimal non-solvable group: a non-solvable group whose proper subgroups are all solvable.
A minimal non-solvable group which is simple is a minimal simple and minimal simple groups are exactly the Frattini-free minimal non-solvable groups, as, if $G$ is a minimal non-solvable group and $\Phi(G)$ is its Frattini subgroup, then $G / \Phi(G)$ is minimal simple.

Remark: for simple groups, $(\mu, \lambda)$-property becomes:
$\mu(H)=\left[N_{G}(H): H\right] \cdot \lambda(H)$.

1. minimal simple groups

- $\operatorname{PSL}\left(2,2^{r}\right)$, where $r$ is a prime;
- $\operatorname{PSL}\left(2,3^{r}\right)$, where $r$ is an odd prime;
- $\operatorname{PSL}(2, p)$, where $p>3$ is a prime such that $5 \mid\left(p^{2}+1\right)$;
- $S z\left(2^{r}\right)$, where $r$ is an odd prime;
- $\operatorname{PSL}(3,3)$.

For these groups, we get the thesis by direct computation

## More generally (but not so much)

2. minimal non solvable groups

Here, we consider $\Phi(G) \neq 1$ and we are left with $H \leq G$, s.t. $\Phi(G) \leq H$.
Using similar arguments to those of Pahlings, we consider $\bar{G}=G / \Phi(G)$ and $\bar{H}=H / \Phi(G)$.
We get:
$\mu(H, G)=\mu(\bar{H}, \bar{G}), \lambda(H, G)=\lambda(\bar{H}, \bar{G})$, and $\left[N_{\bar{G}^{\prime}}(\bar{H}): \bar{H} \cap \bar{G}^{\prime}\right]=\left[N_{G^{\prime}}(H): H \cap G^{\prime}\right]$.
As $\bar{G}$ is minimal simple, the thesis follows

As I said we are considering very small classes. Actually, our minimal non solvable groups are particular $N$-groups (groups
whose local subgroups are all solvable). These were classified by Thompson: they are almost simple groups $G$ $S \leq G \leq \operatorname{Aut}(S)$, where $S$ is one of the following simple groups:

- the linear group $P S L(2, q)$, for some prime power $q \geq 4$;
- the Suzuki group $S z\left(2^{r}\right)$, for some non-square power, $r \geq 3$
- the linear group $\operatorname{PSL}(3,3)$;
- the unitary group $U_{3}(3)$;
- the alternating group $A_{7}$;
- the Mathieu group $M_{11}$;
- the Tits group ${ }^{2} F_{4}(2)^{\prime}$.

Example Let $G=G_{1} \times G_{2}$ where no non-trivial quotients of $G_{1}$ and $G_{2}$ are isomorphic. Then it is easily seen from Goursat's lemma that every maximal subgroup $M$ of $G$ splits as $M=$ $M_{1} \times M_{2}$ with $M_{i} \leq G_{i}, i=1,2$.

For instance, the Theorem applies to $G=G_{1} \times G_{2}$ where $G_{1}$ is minimal non-solvable and $G_{2}$ is solvable. An easy remark about extensions:

If a group $G$ is a finite extension of a group $\bar{G}$ which does not satisfy the ( $\mu, \lambda$ )-property, then $G$ does not satisfy the ( $\mu, \lambda$ )property.
Remark 5. Let $G$ be a finite group, $H$ be a subgroup of $G$, $\mathcal{S}=\{K \leq G: H \leq K\}$ be the subposet of the subgroup lattice of $G$ made by the overgroups of $H$, and $\overline{\mathcal{S}}=\{[K] \leq[G]:[H] \leq$
[ $K]\}$ be the corresponding subposet of the conjugacy classes [ $K$ ] with $[H] \leq[K]$. Suppose that, for every $K \in \mathcal{S} \backslash\{G\}$, we have $N_{G^{\prime}}(K)=G^{\prime} \cap K$. Then the $(\mu, \lambda)$-property for $H$ holds if and only $\mu(H)=\lambda(H)$, and hence, if and only if the posets $\mathcal{S}$ and $\overline{\mathcal{S}}$ are isomorphic. In the case $S_{4} \cong H \leq G=U_{3}(3)$, we have that $\mathcal{S}=\left\{H, M_{1}, M_{2}, M_{3}, G\right\} \not \equiv \overline{\mathcal{S}}=\left\{[H],\left[M_{1}\right],\left[M_{2}\right]=\left[M_{3}\right],[G]\right\}$, where $M_{i}$ is a maximal subgroup of $G$. For every $K \in \mathcal{S}, K$ is self-normalizing in the simple group $G$. Thus, $\mathcal{S} \neq \overline{\mathcal{S}}$ implies that the $(\mu, \lambda)$-property fails at $H$.

Thank You

## Some Bibliography

1. V.Colombo and A.Lucchini, On subgroups with non-zero Möbius numbers in the alternating and symmetric groups, J.Algebra 324 (9) (2010), 2464-2474.
2. P. Hall, The Eulerian functions of a group, Quart. J. Math. 7 (1) (1936), 134-151.
3. T. Hawkes, M. Isaacs, and M. Özaydin, On the Möbius function of a finte group, Rocky Mountain J. Math. 19 (4) (1989), 1003-1034.
4. A. Lucchini, On the subgroups with non-trivial Möbius number, J. Group Theory 13 (2010), 589-600.
5. A. Mann, Positively finitely generated groups, Forum Math. 8 (4) (1996), 429-459.
6. A. Mann, A probabilistic zeta function for arithmetic groups, Internat. J. Algebra Comput. 15 (5-6) (2005), 1053-1059.
7. H. Pahlings, On the Möbius function of a finte group, Arch. Math. (Basel) 60 (1) (1993), 7-14.
8. Weisner L. Weisner, Abstract theory of inversion of finite series, Trans. Amer. Math. Soc. 38 (3) (1935), 474-484.
